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A B S T R A C T 

Oviposition by the female moths of Helicoverpa armigera began on the third day of emergence; however, mating 
stimulated earlier oviposition. Hence, we carried out series of experiments to demonstrate the role of male accessory 
glands-ductus ejaculatoris duplex (MAG-duplex) secretions on female post-mating behaviour in H. armigera moth. 
Injection of extracts from the MAG-duplex into the abdomen of females accelerated oviposition with a marginal 
increase in egg production (fecundity). The secretions of MAG-duplex did not affect the longevity of the females much 
whereas the negative effect on females’ longevity observed in mated females may be because of diversion of more 
resources for egg development and oviposition, leaving fewer resources for survival. On the other hand, marginal 
increase in fecundity but accelerated oviposition indicates that MAG-duplex secretions trigger the egg laying but for 
maintenance of oviposition rate, presence of sperm is necessary. Results of our study not substantiated the 
hypotheses, mechanical stimulation by male triggers oviposition. 
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Numerous studies have demonstrated that seminal fluid 

proteins (SFPs) play an essential role in insect reproduction. 

Insect SFPs are the products of male reproductive tract, 

secretory tissues-accessory glands, seminal vesicles, 

ejaculatory duct, ejaculator bulb and testes. SFPs are 

transferred to females along with sperm during mating. After 

mating in most species of insects, male SFPs results in a 

profound remodelling of behavioural, physiological [1-2] and 

gene signalling pathways in females and typically cause 

transient or permanent loss of sexual receptivity and elevated 

egg production of the females [3-5]. Transferring SFPs that up 

regulate these processes can benefit males, ensuring their 

sperm fertilize the maximum number of eggs before the 

female remate and can also benefit females, in allowing 

increased egg production, only when sperms are present to 

fertilize those eggs. Of the various SFPs that may mediate the 

above responses, those comes from the secretions of male 

accessory glands, are known to play a significant role [6-8]. 

So far, it has been found that substances in MAG are 

transferred to females are hormones and/or active 

proteinaceous factors [9-11] influencing the physiology and 

behaviour of mated females, which include: alleviating 

attraction to males; depressing subsequent mating; enhancing 

oviposition; stimulating oogenesis; transferring, storing, and 

utilizing sperm; and shortening life span. 

Helicoverpa armigera (Lepidoptera: Noctuidae), 

commonly known as cotton bollworm or American bollworm, 

is a serious pest of many agriculturally important crops and 

claims a major share in crop losses every year. The pest status 

of this species is derived, in part, from four characteristics of 

its life history (polyphagy, high mobility, high fecundity and 

facultative diapause) that enable it to survive in unstable 

habitats and adapt to seasonal changes [12]. Therefore, it is 

important to have the basic knowledge of the insect's biology 

and behaviour for the successful introduction of mating 

disruption technology into pest management programs. The 

current study was designed to test the possible involvement of 

the male accessory glands in influencing oviposition, 

fecundity, and longevity of females. 

 

MATERIALS AND METHODS 
 

Insect rearing 

 

H. armigera larvae (NBAII-MP-NOC-01) procured 

from NBAIR, Bengaluru, were reared on modified semi 

synthetic chickpea diet [13]. The 3rd instar larvae were 
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maintained individually in vials (plastic cup, size: 4.2 × 4.5 

cm), at 25oC during the photophase and at 23oC during the 

scotophase, 65±5% Relative Humidity and 16 Light: 8 Dark 

photoperiod in a B.O.D incubator. Pupae were collected and 

sexed according to the characteristics of their exterior 

paramera. The male and female pupae were kept separately in 

plastic containers (25 × 15 × 8 cm) until adult emergence to 

ensure virginity and age. Unless stated otherwise, all female 

adults used in this study were 2-day-old. 

 

Preparation of male crude extract 

 

Virgin males of 2-6 day old were dissected using ice-

cold lepidopteran saline [14], and the whole MAG-duplex 

tissue was transferred into a sterilized, pre chilled 

microcentrifuge tubes. The dissections were carried out after 

two hours of onset of scotophase. 

Tissues excised from 300 moths were pooled and 

homogenized using a tissue homogenizer in 20-fold excess 

(w/v) of Bennett’s extraction buffer [15], centrifuged at 

15,000 g for 20 minutes at 4°C and the supernatant was 

collected carefully. The pellet was similarly extracted two 

times with buffer. All the three supernatants were pooled 

desalted using C18 Sep-Pak cartridge (Waters, USA) as 

described by [16], frozen and subsequently lyophilized and 

stored at -40°C until used. For bioassays the lyophilized 

extract was dissolved in 900 µL 1X phosphate buffered saline 

(PBS) of pH 7.4. 

 

Effect of MAG-duplex Secretions on oviposition rate, fecundity 

and longevity of females: 

 

To determine whether MAG-duplex secretions 

influenced female in terms of oviposition rate, fecundity i.e., 

total number of eggs laid in its life time and lifespan, the 

experiments were set up with four treatments: (1) virgin 

females injected with MAG-duplex extract (n=27), (2) virgin 

females injected with PBS (n=32), (3) virgin females mated 

with naive males of 2-6 day old in the ratio 1:5 (Female: 

Male) (n=29) and (4) untreated virgin females (n=34). 

Injections were given at the beginning of the second 

scotophase after emergence. The females which are mated for 

1hour were selected for bioassay in the treatment 3. 

The moths were cold anesthetized, prior to injection, by 

exposing them to temperature of 4oC for 5 minutes. These 

insects were transferred on to ice and injected 3 µL (one male 

equivalent) MAG-duplex extract using Hamilton syringe into 

the abdominal cavity through intersegment membrane [17]. 

Females were allowed to recover for 15 minutes after 

injection. The experimental moths were kept individually in 

an oviposition chamber (plastic cup, size: 8.5 × 6.5 cm) 

covered with a black cloth serving as an oviposition substrate. 

10% honey solution was provided as food for the moths. The 

eggs of each moth were counted daily till the death. The egg 

count for three days was considered to measure the effect of 

MAG-duplex secretions on oviposition rate whereas total 

number laid till death indicated the fecundity. The results from 

females living less than 5 days were not considered. The 

experiment was replicated 3 times. 

 

Statistical analysis 

 

Data on daily eggs laid, total eggs laid and longevity 

were not normally distributed and thus analyzed using 

nonparametric Kruskal-Wallis test followed by Dunn’s 

procedure for multiple comparison [18]. The relationship 

between fecundity and longevity of MAG-duplex extract 

injected females was analyzed using a linear regression 

analysis. Rejection level was set when α < 0.05 in all analyses. 

All analyses were made using R, version 3.0.2 software. 

 

RESULTS AND DISCUSSION 

 

Effect of MAG-duplex secretions on oviposition 

 

A significant difference among the treated groups (H = 

164.990, p < 0.05) was observed for the data pooled for six 

consecutive scotophase after treatment, on analysis with 

nonparametric Kruskal-Wallis test. Further a pair-wise 

multiple comparison by Dunn’s test showed p < 0.05 in case 

of MAG-duplex injected and mated females. The oviposition 

in virgin and PBS injected was found to be similar (p > 0.05). 

The mated females laid the highest number of eggs among the 

experimental groups. However, the MAG-duplex extract 

injected females laid more number of eggs than virgin and 

PBS injected females and the difference was highly significant 

for those six days, an indication of oviposition stimulation by 

MAG-duplex secretions (Fig 1). 

 

 

Fig 1 Effect of MAG-duplex extract on oviposition (mean±SD): 
Total number of eggs laid by females (six consecutive 

scotophase) injected with MAG-duplex extract and PBS injected 
(control) in comparison with mated and virgin females. The same 

letters on mean bar show no significant difference at p<0.05 
after Kruskal-Wallis followed by Dunn’s test 

 

In H. armigera, mating not only increases the fecundity 

[19] but also triggers the oviposition just as in other insects 

[20-21] and generally the male accessory glands secretions are 

involved in it. In the present study, a bioassay was carried out 

for studying the physiological effects of MAG-duplex 

secretions on female H. armigera moths especially on 

oviposition, fecundity and longevity. The male accessory 

gland factors not only elicit a change in a behavioral pattern 

(receptivity) but also a physiological response (oviposition). 

The study by [22] demonstrates that the target receptors for 

accessory gland proteins are located in the female 

reproductive tract as well as in haemolymph. This may explain 

why male accessory gland secretions delivered by ejaculation 

into the female reproductive tract and injection into female 

body cavity have similar effect on the female physiology. 

Ovulation, oviposition and egg production increased 

from very few eggs per day laid by virgin females to a 

maximum of eggs per day following mating [23-24] in several 

insects. This reflects that female insects carefully adjust their 

investments in mating and egg production depending upon 
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their reproductive state [25]. For elevated egg production or 

for somatic maintenance the materials from spermatophores 

are used [26-27]. However, stimulation mechanism of egg 

production/laying in relation to mating is species specific. 

 

Effect of MAG-duplex secretions on fecundity and longevity 

 

Nonparametric Kruskal-Wallis test showed 

significantly difference in the fecundity of four groups (H = 

20.665, df = 3, p < 0.05). However, after Dunn’s test, there 

was no significant difference in fecundity of PBS injected and 

virgin females (p > 0.05). But a significant difference was 

observed in the fecundity of mated females which laid more 

eggs compared to virgin moths as well as MAG-duplex extract 

and PBS injected moths (p < 0.05). MAG-duplex extract 

injected females laid less than mated females but more than 

PBS injected and virgin females (Fig 2). 

 

 

Fig 1 Effect of MAG-duplex extract on fecundity (mean±SD): Total 
number of eggs laid by females injected with MAG-duplex 

extract and PBS injected (control) in comparison with mated and 
virgin females. The same letters on mean bar show no significant 
difference at p<0.05 after Kruskal-Wallis followed by Dunn’s test 

 

 

Fig 3 Effect of MAG-duplex extract on longevity (mean±SD): Life 
span of females injected with MAG-duplex extract in comparison 
with PBS injected (control), mated and virgin females. The same 

letters on Mean bar show no significant difference at p<0.05 
after Kruskal-Wallis followed by Dunn’s test 

 

In longevity studies a significant difference was 

observed among the groups (H = 53.275, df = 3, p < 0.05). 

The virgin moths lived longer than the mated moths which are 

evident as the difference was more significant between them 

(p < 0.05) and mated moths had shortest life span than the rest 

of the groups. There was no significant difference in the 

longevity between PBS injected as well as virgin females (p > 

0.05). The longevity of MAG-duplex extract injected moths 

was though slightly longer compared to mated moths, but was 

evidently shorter than virgin and PBS injected moths (Fig 3). 

The linear regression analysis was carried out to know 

the relationship between fecundity and longevity. The results 

showed no negative relation though these two behaviours are 

seems to be dependent on each other. This result implies that 

MAG-duplex extract reduced the longevity but not to the 

extent of mated ones (Fig 4). 

 

 

Fig 4 Relationship between fecundity and longevity in MAG-
duplex extract injected females. Negative correlation is not as 

strong as in normal mated moths 

 

MAG-duplex extract injected moths showed threefold 

increase in oviposition rate whereas mated moths showed 

fivefold increase compared to controls.  Between MAG-

duplex injected and mated it was around twofold increase in 

the latter. This clearly indicates that MAG-duplex secretions 

have contributed for acceleration of egg laying but could not 

match with the mated moths. Male accessory gland secretions 

although able to trigger oviposition [28], events such as the act 

of mating or contributions thereof such as the spermatophore 

or presence of sperm is necessary for maximum fecundity [29-

31]. Several researchers have found out that stored sperm are 

needed to maintain the mated state: long-term inhibition of 

mating receptivity, and continued elevated rates of oogenesis, 

ovulation and egg deposition all require the presence of sperm 

in the female [32-35]. In some the duo, viable sperm and 

accessory secretions, are believed to be required for maximal 

oviposition response [36-37]. This could be true in case of H. 

armigera as mated females exhibited higher rate of 

oviposition as well as fecundity compared to virgins or MAG 

extract injected moths in the present study. 

So far, the molecular characteristics of few 

proteins/peptides related to oviposition from MAG in different 

insects [38-43] have been determined. Except for SPDS in D. 

suzukii (which shares great similarity in gene sequence with 

SP in D. melanogaster), other proteins/peptides show little 

similarity with each other and the molecular masses widely 

vary from 3.99 kDa (OSS) to 60 kDa (OSP). This indicates 

that there may exist two possible reasons for different 

molecules with similar function: one is the fast evolution in 

the reproduction field and the other is that their targets are 

different. For example, Acp26Aa [44] (Heifetz et al., 2000) 

and OSP [11] may act on ovaries, while SP is suggested to act 

directly on CA [45]. 

A virgin female lives significantly longer than a mated 

female [46]. The positive correlations between oocyte 

degradation and female longevity suggest that longer female 
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lifespan is the result of recouping resources from eggs through 

oosorption [47-48]. A number of authors [49-50] report that 

mated females showed shorter longevity. Several hypotheses 

were put forward to explain the reason behind this physiology. 

According to some researchers the antagonistic co-evolution 

between the sexes has thus been compelled males to adapt to 

intra sexual competition and intersexual selection that have 

detrimental effects on their mates [51]. Such male effects can 

shorten female longevity due to physical damage from spiky 

male genitalia during mating [52-53], other forms of traumatic 

insemination [54], or altered female reproductive schedules by 

male toxic ejaculates [55-57]. 

The premature death of the mated female is due to a 

combination of factors. First, the energetic requirements of 

progeny production take their toll. Second, just the presence of 

males (even in the absence of mating) also decreases the 

female’s life span [58-59]. Perhaps this is due to her inability 

to stop and rest and eat as she is continually being chased by 

males. A third component to her shortened life is independent 

of either of these, and requires the receipt of seminal fluid 

from the male [35]). To counter this female has evolved 

multiple-mating strategy which benefits her to increase 

genetic fitness as well as to harness more nutrients from the 

male. 

According to the resource allocation model [60-61], 

ageing occurs because resources allocated to reproduction are 

unavailable for investment in somatic repair, making 

individuals or populations that invest more in reproduction 

likely to incur faster ageing and shorter lifespan. Therefore, 

the longevity reduction in mated H. armigera may not 

necessarily caused by male accessory gland proteins as 

suggested in some studies [6] as longevity was not affected in 

MAG injected virgins but a combination of several factors 

including allocation of resources affect the longevity. 

Resource allocation between ova and the soma before and 

after mating in H. armigera females may be a strategy for 

maximum reproductive success under the constraints imposed 

by external environment and sexual interaction. Such resource 

allocation between survival and reproduction may have 

evolved under natural and sexual selection that favours higher 

fecundity [62]. 

 

CONCLUSION 
 

Our study demonstrated the accelerated oviposition 

with a marginal increase in fecundity upon injecting of 

extracts from MAG-duplex into the abdomen of females. The 

secretions of MAG-duplex did not affect the longevity of 

females much whereas the negative effect on females’ 

longevity in mated females was significant. 
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