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A B S T R A C T 
Charcoal rot, a root and stem disease, is one of the most important disease caused by the fungus Macrophomina 
phaseolina in sorghum that limits their productivity worldwide. Fungal infection caused both quantitative and 
qualitative damage to the seeds. An attempt was made to study the quantitative changes in primary metabolites 
on the infected seeds and seedlings of sorghum at different stages after sowing. Observations revealed that 
content of total sugars and starch were highest in healthy (control) seeds and lowest in heavily infected seeds and 
were continuously increased in healthy (control), weakly and in moderately infected seedlings and decreased in 
heavily infected seedlings from 10 to 30 days after sowing. Phenols and proteins decreased as the severity of 
infection increased and were highest in weakly infected and lowest in heavily infected seeds among naturally 
infected seeds. Proteins in seedlings decreased as the infection increased and the total phenol contents were 
increased throughout from 10 to 30 days after germination. 
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Sorghum bicolor (L.) Moench commonly known as 

"Jowar" is one of the most important millets of India 

belonging to the family "Poaceae” and is a worldwide 

widespread C4 crop. It is a subsistence crop and the main 

food for populations in arid or semiarid regions [1-2]. It is 

used for the production of gluten-free products, in alcoholic 

breverages, pet foods. The major sorghum cultivating states 

are Maharashtra, Karnataka, Rajasthan, Tamil Nadu and 

Andhra Pradesh. Charcoal rot disease in sorghum is a root 

and stem disease caused by the soil-borne fungus 

Macrophomina phaseolina (Tassi) Goid. Macrophomina 

phaseolina is a polyphagous, necrotrophic fungus that 

causes charcoal rot disease in more than 500 agriculturally 

important crops including common bean, soybean, chickpea, 

sunflower, maize, geranium, tomato and sorghum [3-4]. 

Charcoal rot is a disease with a high economic impact 

especially in sorghum, soyabean and maize [5]. In sorghum, 

the onset of charcoal rot usually occurs after flowering and 

at the grain filling stage, when the plants are at drought 

stress. High temperature and low soil moisture are the 

important factors predisposing sorghum plants to infection 

by M. phaseolina. Charcoal rot is a major disease, causing 

sorghum yield loss and reduced sorghum seed quality, 

altering the level and profile of seed composition nutrients 

[6]. During infection the host plant defend itself against 

potential pathogens by means of number of physical and 

chemical factors which may already present in the host or 

may be produced to the response of infection [7]. The 

current research focuses on characterizing the effect of one 

of the major diseases (charcoal rot) on seed and seedling 

sugars, protein and phenols. 

 

MATERIALS AND METHODS 
 

Seeds and seedlings of healthy (control) and naturally 

infected (three categories weakly, moderately and heavily) 

with Macrophomina phaseolina after 10, 20 and 30 days of 

sowing were taken for conducting studies. The seeds were 

grown in Petri plates on blotter and earthen pots (height 30 

cm, diameter 20 cm) filled with sterile coarse sand (pH 8.3). 

the emerging healthy and naturally infected seedlings were 

excised for the estimation of primary metabolites at 10, 20 

and 30 days after sowing. 

 

Estimation of primary metabolites 

Total sugars and starch were estimated by the method 

of [8]. Total phenols were determined by [9] method and 

total proteins were measured according [10]. 
 

Statistical data analysis 
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All experiments were performed in 3 different sets 

with each set-in triplicate. The data are expressed as mean, ± 

SEM (standard error of the mean). Statistical analysis of 

data was done by using BioStat 2009 professional 5.8.4 

software in a completely randomized design. All data 

obtained by subjected to one way analysis of variance 

(ANOVA). Values of p which were ≤ 0.05 were considered 

as significant. Graphs were drawn by using Microsoft Excel 

software. 

 

RESULTS AND DISCUSSION 

 

Total sugar contents were increased from healthy to 

weakly but after that it get decreased and lowest in heavily 

infected seeds among all three categories of naturally 

infected seeds. Sugars were continuously increased in 

healthy weakly and in moderately infected seedlings and 

decreased in heavily infected seedlings from 10 to 30 days 

after sowing. Total starch contents were also increased from 

healthy to weakly but after that it gets lowered down and 

lowest in heavily infected seeds among all three categories 

of naturally infected seeds. Starch contents were slightly 

increased in seedlings up to the 20 days and followed by 

decreased to the 30 days stage after sowing. Proteins were 

slightly increased from healthy to weakly and followed by 

continuously decrement and lowest in heavily infected 

seeds. In seedlings, protein contents were continuously 

decreased in healthy, weakly and heavily infected seedlings 

throughout from 10 to 30 days after sowing. Phenols were 

decreased as the severity of infection increased in seeds. In 

seedlings, phenol contents were continuously increased in 

healthy, weakly and heavily infected seedlings throughout 

from 10 to 30 days after sowing. 

 

   

Fig 1 Amount of sugars in seeds of healthy(control) and 
naturally infected (weakly, moderately and heavily) 

 Fig 2 Amount of starch in seeds of healthy(control) and 
naturally infected (weakly, moderately and heavily) 

   

   

Fig 3 Amount of protein in seeds of healthy(control) and 
naturally infected (weakly, moderately and heavily) 

 Fig 4 Amount of phenol in seeds of healthy(control) and 
naturally infected (weakly, moderately and heavily) 

   

Sugar decreased after infection in seeds because it is 

a good source of food and carbon and is easily digested by 

the fungus. [11] reported the effect of seed borne Fusarium 

oxysporum fungus on cowpea. It concluded reduction in 

sugars. As we reported in seedlings the gradual increase in 

the level of sugars and starch (weakly and moderately 

infected seedlings) because high level of sugars in plant 

tissues enhances plant resistance and the increased sugar 

content is one of the adaptive strategies of plants for the 

maintenance of structure and function during stress. Sugars 

enhance oxidative burst at early stages of infection, 

increasing lignifications of cell walls, stimulate the synthesis 

of flavonoids. The primary metabolic process provides 

abundant cellular energy and substrates for plant defense 

responses in the context of plant-pathogen interactions, and 

some metabolites perform their function as molecules 

signalling to trigger defense response through signal 

transduction and pathogen recognition [12-13]. [14-15] also 

finds, in vitro cultured embryo axes of yellow lupine 

become less affected by the infection of hemibiotrophic 

fungus Fusarium oxysporum through external supply of 

sucrose due to enhanced generation of superoxide anions, 

which may be one of the causes for the greater resistance. 

[16] reported in A. thaliana tolerance to biotic stress is 

strongly enhanced by the accumulation of sucrose. A similar 

behaviour was observed by [17] in leaves of alfalfa 
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subjected to drought. Soluble sugars, especially fructose and 

glucose in higher plants can accumulate in tissues as a 

consequence of different types of stress [18], and can 

contribute to regulate cellular turgidity [19]. 

 

   

Fig 5 Amount of sugars in seedlings of healthy (control) and 
naturally infected (weakly, moderately and heavily) on 10th, 

20th and 30th day of sowing 

 Fig 6 Amount of starch in seedlings of healthy (control) and 
naturally infected (weakly, moderately and heavily) on 10th, 

20th and 30th day of sowing 

 
   

Fig 7 Amount of protein in seedlings of healthy (control) and 
naturally infected (weakly, moderately and heavily) on 10th, 

20th and 30th day of sowing 

 Fig 7 Amount of phenol in seedlings of healthy (control) and 
naturally infected (weakly, moderately and heavily) on 10th, 

20th and 30th day of sowing 

 

Protein content was drastically reduced in both seeds 

and seedlings as the days of storage increases. This agrees 

with the findings of [20-21]. The possible reason may be 

that the fungus hydrolyses the proteins present in seeds by 

proteolytic enzymes. This is supported by [22] who reported 

that the crude protein of melon seeds was reduced in fungal 

contaminated seeds when compared with healthy seeds. [23] 

observed decline in the protein content of sesame and 

sunflower seeds artificially inoculated with Alternaria 

alternate, Aspergillus flavus. The presence of higher levels 

of phenols in infected tissues may be implicated in 

resistance of the host to infection. Accumulation of phenolic 

compounds at the infection site has been correlated with the 

restriction of pathogen development. [24] observed 

induction of phenol content in sesame by the inoculation of 

charcoal rot fungus M. Phaseolina. [25] also reported total 

phenol content imparting resistance against soft rot pathogen 

in potato and found significantly higher total phenol content 

in resistant variety than susceptible. 

 

CONCLUSION 
 

Charcoal rot is a major disease of sorghum (Sorghum 

bicolor) caused by Macrophomina phaseolina and results in 

significant loss in yield and seed quality. The present study 

demonstrates that a combination of charcoal rot infestation 

in the soil, and drought results in the infection of sorghum 

plants, can alter seed protein, sugars, fat and phenols. It 

concluded that charcoal rot can alter seed composition, but 

its effect will depend on the type of seed composition 

nutrient. Since there was a lower protein content in seeds 

and seedlings but it shows different response in sugars, 

starch and phenols. 
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