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A B S T R A C T 
A study was undertaken to develop a model for forecasting the yield in cardamom plantations. Eleven biometrical 
characters namely leaves per tiller, tiller height, vegetative buds per clump, bearing tillers per clump, tillers per clump, 
capsules per raceme, racemes per panicle, panicles per clump, panicle length, seeds per capsule and internodal length 
were recorded from the plants. The actual yield (Y) of individual plants was also recorded and used as the dependent 
variable for analysis. Principal component regression analysis was used for estimating the regression coefficients instead 
of regressing the independent variables. The yield forecasting model developed using principal component regression 
exhibited a precision of about 87.6% precision. 
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Cardamom or ‘Elettaria cardamomum Maton’ rightly 

called, as Queen of Spices is one of the most exotic and highly 

priced spices. Yield forecasting is very essential to device 

marketing strategies of agricultural crops. Various forecasting 

methods were developed for annual crops [1] studies were also 

made in a few perennial crops viz. cocoa [2], coconut [3], 

cashew [4], clove [5], rubber [6] and coconut [7]. Yield 

forecasting model in cardamom plantations under intensive 

management was developed [8]. In all the above models that 

use biometrical characters for yield forecasting, non-

independence or multicollinearity among the regressors arise 

thereby making the forecasting model less precise. Principal 

component regression analysis can be used to overcome the 

problems arising due to multicollinearity and the determination 

of the best model to predict the dependent variable, yield. Hence 

attempts were made to estimate the yield in cardamom based on 

biometrical observations using principal component regression.  

 

MATERIALS AND METHODS 
 

Ninety accessions of cardamom were selected at random 

from a well-managed plantation in Udumbanchola taluk of 

Idukki district, Kerala. The farm is situated at 9°53’ N latitude, 

77°09’ E longitude and 1068 m above mean sea level. Data on 

biometrical characters were recorded from ninety selected 

plants for three consecutive years from 2017 to 2020. The data 

for the 3 years were pooled and the resultant data was used for 

the analysis. Eleven biometrical characters namely leaves per 

tiller (x1), tiller height, (x2), vegetative buds per clump (x3), 

bearing tillers per clump (x4), tillers per clump(x5), capsules per 

raceme(x6), racemes per panicle(x7), panicles per clump (x8), 

panicle length (x9), seeds per capsule (x10) and internodal length 

(x11) were recorded from the selected plants. The actual yield 

(Y) of individual plants was also recorded and used as the 

dependent variable for the analysis. 

The data was checked for multivariate normality and was 

found true [9]. The data being a set of correlated variables, the   

principal component analysis was conducted on the correlation 

matrix. Principal component regression analysis [10] is a type 

of regression analysis that uses the principal components for 

estimating the regression coefficients. i.e., instead of regressing 

the independent variables principal components are used. 

Hence the problems of non-independence among the regressors 

do not arise. Thus, principal component regression analysis can 

be used to overcome disturbance of multicollinearity and for the 

determination of the best equation to predict the dependent 

variable. Usually, principal component regression analysis is a 

three-step regression analysis. First step is to run a principal 

component analysis on the explanatory variables. Then run an 

Ordinary Least Square (OLS) regression on the selected 

components that are most correlated with the dependent 

variables. Finally, the parameters of the model are computed 

that corresponds to the input variables (explanatory variables). 
 

RESULTS AND DISCUSSION 
 

The first 6 principal components explain around 94 per 

cent variation of the data set (Table 1). The most important 
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variables (Table 2) to explain 41.441 per cent variation of the 

data set by the first component were tillers per clump and 

bearing tillers. The first principal component (z1) was 

influenced positively by those variables.  

 

Table 1 Total variance explained 

Component 
Initial eigenvalues Extraction sums of squared loadings 

Total Percent of variance Cumulative percent Total Percent of variance Cumulative percent 

1 4.558 41.441 41.441 4.558 41.441 41.441 

2 1.878 17.076 58.517 1.878 17.076 58.517 

3 1.184 10.763 69.280 1.184 10.763 69.280 

4 1.111 10.099 79.379 1.111 10.099 79.379 

5 0.890 8.091 87.470 0.890 8.091 87.470 

6 0.713 6.485 93.955 0.713 6.485 93.955 

7 0.336 3.058 97.013    

8 0.202 1.840 98.853    

9 0.079 0.718 99.571    

10 0.032 0.295 99.866    

11 0.015 0.134 100.000    

Table 2 Component matrix 

 Components 

1 2 3 4 5 6 

Leaves/tiller 0.542 0.406 -0.291 -0.234 -0.055 0.552 

Tiller height   0.706 0.292 -0.115 -0.369 0.093 0.228 

Vegetative buds -0.219 0.247 -0.033 0.551 0.742 0.181 

Bearing. tillers 0.912 -0.243 -0.073 0.029 0.040 -0.175 

Tillers/clump 0.920 -0.316 -0.060 0.093 0.074 -0.110 

Capsules/raceme 0.668 0.275 -0.516 0.244 0.003 -0.216 

Racemes/panicle 0.378 -0.703 0.438 -0.069 0.171 0.297 

Panicles/clump 0.912 -0.298 -0.077 0.087 0.074 -0.117 

Panicle length 0.655 0.336 0.650 -0.045 0.071 -0.047 

Internodal length 0.351 0.798 0.417 0.052 -0.059 -0.198 

Seeds/capsule 0.262 -0.017 0.119 0.728 -0.527 0.303 

The second component (z2) which explained 17.076 per 

cent variation of data set was mostly influenced by the variables 

intermodal length and racemes per panicle. The third 

component (z3) explained 10.763 per cent variation of the data 

set and was mainly influenced by the variables panicle length 

and capsules per raceme. The fourth component (z4) explained 

10.099 per cent variation of the data set and was mainly 

influenced by the variables seeds per capsule and vegetative 

buds. The fifth component (z5) explained 8.091 percent 

variation of the dataset and was mainly influenced by the 

variable’s vegetative buds and seeds per capsule. The sixth 

component (z6) explained 6.485 per cent variation of the data 

set and was influenced by the variables leaves per tiller and 

seeds per capsule. R is the multiple correlation coefficient 

which explains how strongly the components are related to the 

dependent variable. Here, the large value of R (Table 3) 

indicates that the components are highly related to the 

dependent variable. 

 

Table 3 Model summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 0.971a 0.942 0.938 0.08257 

Table 4 ANOVA Table 

Model Sum of Squares Degrees of freedom Mean Sum of Squares F Sig. 

 

Regression 9.188 6 1.531 224.601 0.000** 

Residual 0.566 83 0.007   

Total 9.754 89    
**Significant at 1% level of significance  

Table 5 Regression coefficients 

Model 
Unstandardized Coefficients Standardized Coefficients 

t value Sig. 
B Std. Error Beta 

1 

Constant -0.976 0.159  -6.124 0.000(**) 

z1 0.035 0.003 1.385 11.580 0.000(**) 

z2 -0.025 0.004 -0.563 -6.114 0.000(**) 

z3 0.004 0.001 0.452 3.224 0.002(**) 

z4 0.012 0.005 0.410 2.240 0.028(*) 

z5 0.007 0.005 0.129 1.270 0.208(ns) 

z6 0.017 0.004 0.525 4.527 0.000(**) 
**Significant at 1% level; *Significant at 5% level; NS- Not significant  

Res. Jr. of Agril. Sci. (Jan-Feb) 13(1): 211–213                             212 

CARAS 



From (Table 3-4) it is observed that the fitted regression 

model is good as the value of R is 0.971 and the model is 

statistically significant. As it was observed that the component 

z5 is not significant (Table 5) in this model, the model was 

revised by dropping the fifth component. From (Table 6-7) it is 

observed that. the fitted regression model is good as the value 

of R is 0.97 and the model is statistically significant. 

 

Table 6 Model summary 

Model R R Square Adjusted R Square Std. Error of the estimate 

1 0.970a 0.941 0.937 0.08287 

Table 7 ANOVA Table 

Model Sum of squares Degrees of freedom Mean sum of square F Sig. 

 

Regression 9.177 5 1.835 267.248 0.000** 

Residual 0.577 84 0.007   

Total 9.754 89    

**Significant at 1% level 

Table 8 Regression coefficient 

Model 
Unstandardized coefficients Standardized coefficients 

t value Sig. 
B Std. Error Beta 

1 

Constant -1.003 .159  -6.329 .000** 

z1 .038 .002 1.488 16.894 .000** 

z2 -.027 .004 -.612 -7.293 .000** 

z3 .004 .001 .490 3.563 .001** 

z4 .009 .005 .324 1.900 .045* 

z5 .018 .004 .539 4.654 .000** 
**Significant at 1% level; *Significant at 5% level  

In the revised model all the principal components z1, z2, 

z3, z4 and z6 are all statistically significant (Table 8), So our 

fitted model is: 

 

Y=-1.003 + 0.038 z1 - 0.027 z2 + 0.004 z3 + 0.009 z4 + 0.018 z6
 

 

Finally, after the adjustments for unstandardized 

coefficients, the final fitted model in terms of the input variables 

is: 

1 2 3 4 5 61.003 .0097 .0040 .0025 .0044 .0081 .0036Y x x x x x x= − + + + + + −

+ 0.0166 7x +0.0093 8x + 0 .0012 9x - 0.00 10x + 0.0163 11x  

       

This model was verified in the field with twelve promisi-

-ng clones which revealed a mean precision of 87.6 per cent. 

 

CONCLUSION 
 

The price behavior in cardamom is highly seasonal and 

hence early information on the production that can be expected 

is essential in deciding the market strategies.  Further, the 

international prices and local production figures do have a 

direct bearing on the current year prices. Since harvest of 

cardamom continues for a longer period, recording the yield of 

individual plants may not be feasible all the time.  In this context 

the model proposed is very relevant for estimating the 

production well in advance and thereby to make a market 

commitment for better returns for the produce.
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