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A B S T R A C T 
High temperature is one of the major environmental stresses, which is an important reason for altering the physiological 
responses such as surplus production of reactive oxygen species and consequent oxidative damage among animals 
especially in insects. This ROS could stimulate intrinsic as well as extrinsic pathways of apoptosis. The present study 
envisages appraising the impact of thermal stress on the expression of apoptotic related genes BmApaf-1 and BmDredd 
and the response of antioxidant enzymes (SOD, CAT, POD, GPX, GR, GST) in the silk gland of silkworm. For this study the 
fifth instar larvae grouped in to control (28±1ºC) and heat exposed group (40±2ºC) and analyzed the expression 
of BmApaf-1 and BmDredd mRNA by real time PCR using Actin as the internal control. Based on the results we observed 
a significant 1.7 fold upregulation of BmApaf-1 and 1.5 fold upregulation of BmDredd genes under thermal stress and 
the antioxidant enzymes showed increased activity against thermal stress to alleviate the consequent oxidative stress. 
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Silkworms are economically important insects that are 

thermally sensitive, rearing at agreeable temperatures between 

25-28 °C. Temperature, humidity and photoperiod fluctuations 

are all important factors in the growth and development and 

production of high-quality cocoons [1]. Elevated temperature 

has a direct impact on cell organizations, metabolic processes 

[2] and physiological activities of silkworm [3]. Normally the 

endogenous oxidative metabolism as well as from different 

exogenous sources results the formation of ROS, which consists 

of partly reduced metabolites of oxygen such as superoxide 

anion (O2), hydrogen peroxide (H2O2), and hydroxyl radicals 

[4-5]. 

Although ROS does have a range of functions, for 

example an ideal level of intracellular ROS needed for the 

mechanism of cellular homeostasis [6], where as a slight 

amount of ROS render as a signaling molecule in the survival 

pathways [7]. Excessive production of reactive oxygen species 

(ROS) can cause oxidative stress [8]. The status of oxidative 

stress is defined as the disparity between the formation of ROS 

and the regulation of antioxidant defense system [9]. 

Antioxidant enzymes and non-enzymatic antioxidants 

are used to counteract the generation of high amounts of ROS 

[10]. Superoxide dismutase (SOD), catalase (CAT), peroxidase 

(POX), glutathione peroxidase (GPX), glutathione reductase 

(GR), glutathione S-transferase (GST), are included in the 

category of enzymatic antioxidants [11]. Whereas ascorbic 

acid, vitamin E and reduced glutathione (GSH) are non-

enzymatic antioxidants [12]. Each enzyme plays their own role 

to combat oxidative stress. Superoxide anion can be converted 

to molecular oxygen and hydrogen peroxide by SOD [11], 

although the catalytic enzyme CAT [13] and POX [14] convert 

hydrogen peroxide to molecular oxygen and water. GPX 

engaged in the detoxification of H2O2 as well as reduction of 

organic hydroperoxides and lipid peroxides, these actions are 

facilitated by reduced glutathione (GSH,) which functions as a 

hydrogen donor. The enzyme glutathione reductase liable for 

the reversion of reduced glutathione (GSH) from oxidized 

glutathione (GSSG) [11]. The hydroperoxides formed by the 

byproduct of lipid peroxidation, can be removed by the enzyme 

GST.  The activity of antioxidants may not be enough to control 

the excessive ROS produced and it will lead to oxidative stress 

[15]. 

The stress induced cells become apoptotic or necrotic, 

due to the structural changes occurred especially in the lipids, 

proteins and nucleic acids. These cellular injuries and the 

intensity of lipid peroxidation determine the depth of oxidative 

stress [16]. Unwanted and potentially perilous cells are being 

eliminated by the physiological process called apoptosis [17]. 

Apoptosis plays different roles such as tissue homeostasis [18], 

regulation of development and organ differentiation process, 

and confrontation against environmental stress [19]. It has two 

important pathways, intrinsic and extrinsic [20]. ROS shows 
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important roles in extrinsic [21] as well as intrinsic pathways 

[22]. Intrinsic pathway also known as mitochondrial apoptotic 

pathway [23], triggered by intracellular signals and extrinsic 

pathway activated by the transmembrane receptor mediated 

interactions [24]. In intrinsic pathway, mitochondria release 

cytochrome C makes an apoptosome complex with Apaf-1 and 

ATP, which activates caspase-9. The activated caspase-9, 

activate caspase-3 and commence apoptotic process [23]. In the 

extrinsic pathway, plasma membrane carrying cell death 

receptors and that have been activated by the binding of 

extracellular ligands [25] and finally activates the effector 

caspases [26]. 

BmApaf- 1(Bombyx mori apoptotic peptidase activating 

factor 1) is similar to mammalian Apaf-1 [27-28] and BmDredd 

(Bombyx mori death related ced-3/Nedd2-like protein) is an 

initiator caspase homologue [29] shows high similarity with 

mammalian initiator caspases [30]. Normally insect larval 

specific tissues are detached during programmed cell death 

mechanism [31]. In silkworm silk gland is the silk producing 

larval specific organ [32], which can be decadent quickly 

following the spinning stage [31]. The present study was 

conducted to find out the effect of thermal stress in the activity 

of antioxidant enzymes and the expression of BmApaf-1 and 

BmDredd genes in the silk gland of silkworm. 

 

MATERIALS AND METHODS 
 

Experimental animals and protocol  

Bombyx mori larvae were procured from National 

Silkworm Seed Organization, Central Silk Board, Pallatheri, 

Palakkad, Kerala. The rearing was carried out according to the 

method of [33]. The larvae were reared on an appropriate 

temperature 25±1 °C and 70-85% relative humidity. They were 

fed with fresh mulberry leaves ad libitum. 

In the fifth instar stage the larvae were grouped into 

control group and test group. The test group larvae were treated 

with 40±2 °C temperature in 1 hour per/day during the fifth 

instar stage. The silk gland of fifth instar larvae were selected 

as the experimental tissue and it was dissected for examining 

the activity of antioxidant enzymes and gene expression pattern. 

 

Determination of oxidative stress markers  

Tissue homogenization was done with an ice-cold PBS 

buffer of 7. 4 pH, centrifugation at 10000 RPM for 30 min at – 

4 °C. After centrifugation the supernatant was kept in pre-

chilled eppendorf tubes at -20 °C, used for further studies. The 

quantification of protein was determined by using Lowry’s 

method [34] in which bovine serum albumin (fraction v, sigma) 

was taken as standard. The quantity of lipid peroxidation was 

determined by the method of [35]. 1.0 ml of the tissue 

homogenate of silk gland was mixed with a mixture of TBA-

TCA and HCl reagent. Then the samples were kept in a boiling 

water bath for 15 minutes and after cooling the samples, then 

they were centrifuged for up to 10 minutes. The supernatant was 

used for the estimation of various stress markers. Concentration 

of lipid peroxidation expressed in terms of µM MDA produced 

/mg protein. 

 

Catalase enzyme   

The Luck [36] was used to determine catalase enzyme 

activity by drop in absorbance induced by H2O2 breakdown at 

240 nm, which results in the formation of water and oxygen. 

Enzyme activity expressed in terms of 1 µM of H2O2 consumed 

/min/mg protein.  

 

SOD enzyme activity 

The approach of Marklund and Marklund [37] could be 

used to determine SOD activity at 420 nm. This approach is 

based on the amount of enzyme needed to block the 

autoxidation of pyrogallol by 50%. The activity expressed in 

units/ml. 

 

Peroxidase enzyme activity 

The activity of peroxidase enzyme at 420 nm was 

determined by the method of Reddy et al. [38], in which 

oxidation of substrate catechol was done with the presence of 

H2O2. The change in absorbance measured in µmoles/min/mg 

protein. 

 

Glutathione peroxidase 

The glutathione peroxidase enzyme is used to 

decompose H2O2 or other peroxides as well as oxidize GSH in 

to GSSG. The activity of this enzyme was measured at 412 nm 

using the method of Rotruck et al. [39]. 

 

Glutathione reductase (GR) 

Glutathione activity was measured at 340 nm using the 

method of David and Richard [40], in which glutathione was 

reduced to generate reduced glutathione (GSH) in the presence 

of NADPH, and NADPH was oxidized to form NADP+. One 

unit of glutathione reductase activity was defined as the 

reduction of 1 micromole of glutathione per minute per mg of 

protein (µM NADPH oxidized /minute/mg protein). 

 

Glutathione S-transferase 

According to the method of Habig et al. [41], 2, 4-

dinitro-chlorobenzene (CDNB) react with reduced glutathione 

(GSH), to turn out a yellow product with 340-360 nm 

absorbance. Activity of enzyme related with the formation of 

product and it can be calculated by the increase in absorbance 

at 340 nm. The unit expressed in µmoles of 2, 4-dinitrophenyl 

glutathione formed /min/mg protein. 

 

mRNA expression studies  

Silk gland tissues were dissected out using an ice-

cold PBS buffer. TRIZOL (Invtrogen) reagent method was used 

for the isolation of total RNA from desired tissues and quantity 

measured by using QubitTM 4 fluorometer. The 1-5 µl of total 

RNA was used as template for first strand cDNA synthesis 

using iScript cDNA synthesis kit (Biorad) according to the 

manufacturers’ instructions. 

 

Table 1 Primers for real time PCR analysis 

Genes  Primer (5’-3’) Reference 

BmApaf-1 F: GGTTTGCTCGTAATGGAC 

R: CAGGACCAGTGGAGGCT  

[43]  

BmDredd F: AGTGACAGAAATGCTTGGAAC 

R: AAATGGGAACCTGAGGATG 

[43]  

BmActin F: CGGGAAATCGTTCGTGAT 

R: ACGAGGGTTGGAAGAGGG  

[31] 

 

Real time PCR 

RT-PCR was used to examine gene expression levels in 

this investigation. (Table 1) lists all primer sequences utilized 

in this study. The Biorad CFX Connect RT PCR apparatus and 

i Taq Universal SYBR Green Supermix were used to prepare 

RT-PCR experiments according to the manufacturer's 

instructions. 2µl of cDNA, 10µl of SYBR Green Supermix, 1µl 

of each gene specific primer and 4µl of ddH2O were used in 

each 20 µl reaction volume. The thermal cycler programme 

featured 5 minutes at 95 °C, followed by 10 s at 94 °C, 30 s at 

56 °C, 30 s at 72 °C and 10 s at 55 °C for 35 cycles. Every 
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measurement was repeated three times. The relative expression 

level was calculated using the 2-ΔΔCt technique, which was 

described by Livak et al. [42]. BmActin was used as internal 

control. 

 

Statistical analysis 

The differences among control group and treated group 

were analyzed by one-way analysis of variance (ANOVA) 

followed by Tukey’s test using Origin statistical software and 

Microsoft Excel, the result obtained indicated as mean ± SEM 

(Standard error of mean). P values less than 0.05 considered as 

statistically significant. 

 

  

Fig 1 Effect of temperature on the 
protein concentration (mg/ml) of 

SG tissue. Those bars having 
different letters indicates 

significant difference (P < 0.05). 
The results represented as the 

mean ± SEM 

Fig 2 Effect of temperature on the 
level of MDA (µmoles/ min/ mg 

protein) in SG tissue of B. mori. The 
bars sharing same alphabets are not 
significant. P < 0.05 represented as 

significantly different. Data 
expressed as mean ± SEM 

RESULTS AND DISCUSSION 
 

1. Total protein concentration of silk gland  

Analysis of total soluble protein concentration in the silk 

gland showed significant increase in treated (2.16) group 

compared to the control (1.89). 

 
2. Changes in LPO levels 

MDA concentration indicates the level of lipid 

peroxidation in response to thermal stress, and it also describes 

the level of oxidative stress in the silk gland tissues of B. mori 

as shown in (Fig 2). The present study showed that there is a 

significant increase in the level of LPO in the treatment group 

compared to control. 

 
3. Activities of antioxidant enzymes 

The activity of SOD showed a significant increase in the 

test group compared to the control (Fig 3). The activity of 

catalase in the silk gland tissues of the control and test group 

was analyzed and found significant increase in the heat-exposed 

group compared to the control (Fig 4). The activity of POD 

enzyme in control and treated larvae of silk gland shows a very 

low level of activity in the control group but a significantly 

increased activity was found in the treated sample (Fig 5). GPX 

activity was significantly enhanced in the silk gland of B. mori 

larvae by exposure to temperature. Test group shows increased 

activity of GPX than the normal group (Fig 6). Analysis of GST 

activity showed discrepancy among the both examined groups, 

significantly elevated activity was found in the treated group 

than the normal group (Fig 7). Glutathione reductase shows 

lowest activity in the normal group but significantly increased 

activity was found in the treated sample (Fig 8). 

 

     

Fig 3 Effect of temperature on the 
activity of SOD (µmoles 

oxidized/min/mg protein) in SG 
tissue of B. mori. The bars sharing 
same alphabets are not significant. 

P < 0.05 represented as 
significantly different. Data 
expressed as mean ± SEM 

Fig 4 Effect of temperature on the 
activity of CAT (µmoles of hydrogen 

peroxide consumed/min/mg protein) 
in SG tissue of B. mori. The bars 
sharing same alphabets are not 

significant. P < 0.05 represented as 
significantly different. Data expressed 

as mean ± SEM 

 

Fig 5 Effect of temperature on the 
activity of POD (µmoles /min/mg 

protein) in SG tissue of B. mori. The 
bars sharing same alphabets are not 
significant. P < 0.05 represented as 

significantly different. 
Data expressed as mean ± SEM 

Fig 6 Effect of temperature on the 
activity of GPX (µmoles NADPH 

oxidized /min/mg protein) in SG tissue 
of B. mori. The bars sharing same 

alphabets are not significant. P < 0.05 
represented as significantly different. 

Data expressed as mean ± SEM 
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Fig 7 Effect of temperature on the 
activity of GST (µmoles /min/mg 
protein) in SG tissue of B. mori. 

The bars sharing same alphabets 
are not significant. P < 0.05 
represented as significantly 

different. 
Data expressed as mean ± SEM 

Fig 8 Effect of temperature on the 
activity of GR (µmoles of NADPH 
oxidized /min/mg protein) in SG 

tissue of B. mori. The bars sharing 
same alphabets are not significant. P 

< 0.05 represented as significantly 
different. 

Data expressed as mean ± SEM 

 

Effect of thermal stress on the expression of BmApaf-1 and 

BmDredd genes 

To evaluate the expression of mRNA levels of BmApaf-

1 and BmDredd genes in silk gland tissues of the fifth instar 

larval stage by RT-PCR. The silk gland tissue showed change 

in the expression of BmApaf-1 and BmDredd genes in both 

control and test groups. The larvae exposed to thermal stress 

showed 1.7 fold significant upregulation of BmApaf-1 and 1.5 

fold significant upregulation of BmDredd gene compared with 

control (Fig 9). 

 

 

Fig 9 Effect of temperature on the expression of apoptotic 
related genes in SG tissue of B. mori. BmActin were used as the 
internal control to normalize the data that were represented as 
mean ±SEM by the three independent measurements. The 2^-
ΔΔCT method was used to calculate the fold difference of gene 
expression. The bars sharing same alphabets are not significant. 

P < 0.05 represented as significantly different 

Temperature is one of the major abiotic factors that 

influences the growth and development of silkworm and 

production of excellent quality cocoons [44]. Rates of 

biological as well as physiological processes have been 

adversely affected by high temperature [45], which will be 

reflected in the quality of cocoons [46]. The present study was 

intended to investigate the quantity of protein, level of oxidative 

stress, response of antioxidant enzymes and expression of 

apoptotic related genes against induction of thermal stress in the 

silk gland of silkworm. The quantity of protein in the larvae 

showed a significant increase in the silk gland in response to 

high temperature compared to the control. The results indicated 

that the larvae treated with high temperature exhibited elevated 

metabolic rate of proteins in the silk gland and may be due to 

the synthesis of new stress proteins. A similar inclination was 

demonstrated in tasar silkworm Antheraea mylitta D [47]. 

An exact steadiness exists between ROS production and 

activity of antioxidant enzymes, nevertheless this will be 

disturbed by environmental stress like high temperature 

disclosure, insect’s exhibit consequent physiological responses 

lead to the generation of surplus ROS, which is able to smash 

up the structure of proteins, lipids, DNA and RNA [7] and also 

disrupt the cell membrane fluidity and in turn apoptosis [48]. 

Cellular and tissue level oxidative stress has been 

established by measuring the products formed by lipid 

peroxidation in vertebrates as well as in invertebrates. The 

products of lipid peroxidation is a sign of oxidative damage to 

lipids and in addition, it also triggers the regulation of 

antioxidant resistance mechanisms’ [49]. An oxidative attack 

on the peroxidized polyunsaturated fatty acids gives the product 

MDA, an indicator of the extent of oxidative damage of lipids 

[50]. An elevated level of MDA concentration in the silk gland 

of fifth instar larvae was observed in response to thermal stress 

(Fig 2). Our results obviously demonstrated that in B. mori, 

thermal stress was accompanied by lipid peroxidation and other 

responses to oxidative stress. A Similar trend of increase in the 

levels of MDA was reported in the posterior silk gland, midgut 

and fat body of silkworm B. mori on exposure to azaserine [51]. 

More over the same trend was also reported in some other 

insects such as citrus red mite Panonychus citri [52], oriental 

fruit fly Bactrocera dorsalis [3], and predatory mite Neoseiulus 

cucumeris [53]. 

Antioxidant enzymes work synergistically to alleviate 

the oxidative stress engendered by surplus ROS inside the cell 

[53]. SOD, CAT, GST, GSH-Px, are enzymatic antioxidants 

and GSH is the non-enzymatic antioxidant. Among these 

antioxidants SOD is the most prominent ubiquitous 

metalloenzyme facilitating the diminution of elevated levels of 

superoxide radical induced by low or high temperatures [54]. 

The current study has revealed an increase in SOD levels in silk 

glands of fifth instar larvae exposed to temperature compared 

with control. This implies that the level of SOD was altered with 

changing environmental temperature. A parallel trend of result 

was demonstrated by Jena et al. [49], who observed that, a 

significantly elevated level of SOD in pupal testes of tropical 

tasar silkworm Antheraea mylitta under thermal stress. Ali et 

al. [55] reported that another insect Mythimna separata induced 

with high temperature showed significantly increased levels of 

SOD. 

CAT is responsible for the degradation of H2O2 [49]. In 

the present study CAT activity was increased up on thermal 

stress in the fifth instar larvae (Fig 4). The result indicated that 

the relation between H2O2 production and CAT activity was 

influenced with thermal stress. Such a case was reported by 

[56], the CAT level in Chilo suppressalis larvae exposed to 

thermal stress significantly elevated over control. The result is 
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also consistent with the findings of Jena et al. [49], they 

revealed that the activity of CAT is enhanced in the testes of 

pupa on exposure to thermal stress. 

Glutathione s-transferases are known to be an important 

multifunctional enzyme play major role in the removal of toxic 

LPO products [53], detoxification of xenobiotics, protection 

from attack of oxidative stress and also help in isomerization 

and intracellular transportation [57]. In the present experiment, 

enhancement of GST activity was determined under thermal 

stress compared to the control. This suggests that GST actively 

eliminated the lethal LPO products formed on thermal stress 

[58]. 

POX enzyme is able to convert H2O2 into water and 

molecular oxygen [14], although it works together with GSTs 

and metabolizes the lipid peroxides [3]. In the present study, 

peroxidase enzyme shows increased activity under thermal 

stress. Similar observations were done by [53], [58]. These 

observations indicate the necessity of POX activity for 

scavenging the ROS produced under thermal stress. 

Glutathione peroxidase is able to reduce free radical 

damage by metabolizing lipid peroxidation products and H2O2 

using reduced glutathione as substrate [59]. The present data 

obtained in the GPx activity in B. mori larvae treated with 

temperature determined a significant increase compared with 

control. This data suggests that GPx takes major action against 

ROS produced during thermal stress [60]. 

The homodimeric flavoprotein GR is capable of 

synthesizing reduced glutathione (GSH) from oxidized 

glutathione (GSSG) using NADPH as a reducing cofactor. This 

bears different functions including coping against oxidative 

stress and also the biosynthesis of protein and DNA by 

maintaining a balanced ratio of GSH and GSSG [61]. In our 

study GR showed an increased activity in thermal stress 

induced groups than control [62]. 

Under stress conditions cells are capable of producing 

ROS and they could be a reason for inducing apoptosis [56]. 

ROS is capable of stimulating intrinsic as well as extrinsic 

pathway of apoptosis [21]. In the present study there was an 

enhanced production of MDA in the treated group indicates the 

lipid membrane damage due to ROS produced during the 

exposure of thermal stress. The present study implies an 

elevated expression of BmApaf-1 and BmDredd in the thermal 

stress exposed group compared to control. BmApaf-1 is 

involved in the intrinsic pathway of apoptosis. Chen et al. [63] 

reported that H2O2 induced oxidative stress in BmN-SWU1 

cells showed an increased expression of BmApaf-1. Previous 

studies proved that BmDredd is actively participated in the 

apoptosis process; such a case was reported by Wang et al. [64]. 

An elevated expression of BmDredd was shown in the emodin 

induced treatment of BmN –SWU1 cells. UV treated BmN cells 

also showed increased expression of BmDredd in silkworm 

Bombyx mori [65]. 
 

CONCLUSION 
 

In conclusion, thermal stress is able to produce oxidative 

stress in the silk gland of Bombyx mori larvae and it may cause 

lipid membrane damage. The antioxidant enzymes make an 

effort to reduce the oxidative stress by increasing their activity. 

The significant 1.7 fold increase of BmApaf-1 and 1.5 fold 

increase of BmDredd genes in heat induced silk glands may be 

the indication of activation of apoptotic pathway. Further 

investigations are required to learn more about impact of 

thermal stress on the apoptotic pathways in the silk gland. 
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